
Robust Detection of Corners and Corner-line links in images

Andres Solis Montero, Milos Stojmenović, Amiya Nayak
School of Information Technology and Engineering

University of Ottawa
Ottawa, Canada

{asolis, mstoj075, anayak}@site.uottawa.ca

Abstract. We define corner points in an image as the
intersections among detected straight line segments, and propose
an algorithm that detects corners from such a definition. Our
corner detection algorithm CLDC then makes use of the LDC
(Line Detection using Contours) algorithm from [19], which
outputs the list of all detected line segments together with their
endpoints. Each line segment is extended in a post-processing
step. CLDC (Corners from LDC) then finds corners in O((n+I)
log n) time, where n and I are the number of endpoints the
intersections of line segments, respectively. Detected corners are
linked via line segments that define them. Such an output of the
corner detection algorithm is a novel concept. The algorithm is
comparable in time complexity with other algorithms, while
providing more information about the line segments in the image.
CLDC is robust to image transformations, such as rotation and
translations. Our CLDC is compared to some existing algorithm,
and its advantages are demonstrated.

Keywords: Corner detection, lines, sweeping algorithm, shape
recognition, image processing.

I. INTRODUCTION
Many computer vision approaches for extracting features

and inferring image content are based on detecting some points
of interest. There is a plethora of interest point definitions in
literature, each motivated by particular applications. In this
article, we are interested in detecting corners in images, as
particular points of interest that are frequently used in stereo
matching, panoramic photographs, object
detection/recognition, motion tracking, image database
retrieval and robot navigation. For instance, corner detection
algorithms enable a fast relationship between interest points
among different images of the same object. It is easier to relate
pixels instead of some regions with certain heights and widths.
For example, motion is ambiguous at an edge, but
unambiguous at a corner. Shapes can be approximately
reconstructed from their corners.

 Corners in images can be defined in variety of ways. Each
corner detection algorithm normally uses its own definition,
and it is normally the one that closely resembles what the
algorithm itself detects as corners. The goal is always to
reproduce as closely as possible what a human eye would
consider to be a corner. A corner can be defined as the
intersection of two or more edges. Also, a corner can be
defined as point where there are two dominant and different
edge directions in a local neighborhood of the point, the local
minimum or maximum intensity of a point, line ending or point
on a curve where the curvature is locally maximal.

The repeatability and efficiency of a corner detector
determines how likely it is to be useful in a real-world

application. Repeatability is important because the same scene
viewed from different positions should yield features which
correspond to the same real-world 3D locations. Efficiency is
important because this determines whether the detector
combined with further processing can operate at an acceptable
frame rate.

Existing corner detectors are usually not very robust and
often require human supervision. Quality of a corner detector is
often judged based on its ability to detect the same corner in
multiples images, like different lighting, rotation, translation
and other transforms. The Computational time needed to detect
corners is also important, and faster algorithms are preferred.

Recent detailed surveys of a number of corner detection
algorithms were given in [16, 22]. Most popular schemes are
proposed by Moravec [11], Beaudet [3], Kitchen & Rosenfeld
[9], Harris & Sephens [8], Kanade, Lucas and Tomasi [10, 21],
Smith and Brady (SUSAN [17]), Mokhatrian and Suomela
(Curvature Scale Space [12]), Trajkovic and Hedley [20],
Zheng, Wang and Teoh [23], Davies [6] and Rosten, Porter and
Drummond (FAST [16]). Existing algorithms are roughly
divided into those that detect corners from grayscale images,
and from digital curves (where contours are extracted first).
Grayscale image based algorithms usually detect interest points
other than corners, and mostly search for lightness and
brightness contrasts in images, find local maxima in
differentiate geometry operators, or compute the determinant of
the Hessian matrix and second order derivates. The algorithm
in [8] uses a local window in the image to determinate the
average change of intensity by shifting the window in various
positions. Only the Curvature Space Scale (CSS) algorithm
[12] (improved by Awrangjeb and Lu [1]) explicitly uses the
contour to detect corners, although by a different approach
from the one described in this article.

We define corners as the intersections of detected line
segments. This corner definition was also used only in [6]
where lines are detected using the Hough line Transform. Our
algorithm preserves the idea of a corner as the intersection of
two or more straight lines. Our corner detection algorithm
makes use of the LDC (Line Detection using Contours)
algorithm from LDC [19]. The LDC algorithm outputs the list
of all detected line segments together with their endpoints.
Each line segments is extended here by E pixels before further
processing. Our CLDC algorithm then finds the intersections of
these extended line segments using the plane sweep algorithm,
and eliminates duplicates (with the help of a kd-tree structure)
by preserving only the corners obtained by the plane sweep and
eliminating other corners at distance less than E pixels. The
algorithm runs in O((n+I) log n) time, where n and I are the
number of endpoints, and the intersections of line segments,

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.109

495

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.109

495

2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

978-0-7695-4108-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CIT.2010.109

495

respectively. It is comparable in time complexity with other
algorithms, while providing more information about the line
segments in the image. Our definition of corner as the
intersection of line segments corresponds to human perception
of corners. Detected corners are linked via line segments that
define them. Each corner is linked to at least another corner in
the image. Such an output of a corner detection algorithm is a
novel concept in computer vision and image processing. Our
CLDC (Corners from LDC) algorithm is robust to image
transformations, such as rotation and translations. The
additional benefit of our algorithm is to report corners together
with the line segments they belong to.

In section 2 we present a literature review on corner
detection and describe some existing techniques used in our
CLDC algorithm. Section 3 explains our CLDC algorithm and
the modifications to the LDC output. Experimental data in
Section 4 compares our CLDC algorithm with some of existing
and widely used algorithms.

II. LITERATURE REVIEW

A. Existing Corner Detection Algorithms
Moravec [11] defined the concept of "points of interest" as

distinct regions in images in 1977 and proposed to use them to
find matching regions in consecutive image frames. This low-
level processing step helped to determine the existence and
location of objects in the vehicle's environment. The concept in
[11] included corner detectors since interest points, like
corners, were the points where there is a large intensity
variation in every direction. A small square window (3x3, 5x5,
or 7x7 pixels) centered at P is shifted by one pixel in each of
the eight principle directions. The intensity variation for a
given shift is calculated by taking the sum of squares of
intensity differences of corresponding pixels in these two
windows. Intensity variation at P is the minimum intensity
variation calculated over all shifts. The Moravec operator can
be used to give a measure of cornerness to each pixel in the
image. Corners are local maxima, except those with cornerness
value below a threshold. This simple corner detector is now
considered generally obsolete [15]. It is computationally
efficient but is not rotationally invariant, is susceptible to
reporting false corners along edges and at isolated pixels and is
sensitive to noise.

The Harris/Plessey operator [8] allows an estimate of the
intensity variation to be calculated in any direction, thus
generalizing Moravec’s operator. The cornerness measure is
reformulated to consider the variation between the intensity
variation measures in different directions. Second image
derivatives are convoluted by the Gaussian window. The
resulting matrix M contains all the differential operators
describing the geometry of the image surface at a given point.
The Eigenvalues of M will be proportional to the principle
curvatures of the image surface and form a rotationally
invariant description of M. The cornerness measure is defined
via the determinant and trace of M. However, since the
components of M are estimated using only the horizontal and
vertical gradients, they are not rotationally invariant. Despite
the high computational demand, this algorithm is widely used
in practice. It is sensitive to noise since it relies on gradient

information, has poor localization on many junction types, and
is not rotationally invariant [15]. The significance of poor
localization of certain junction types is application dependent
and the widespread use of this algorithm suggests this
limitation can be overcome.

Trajkovic and Hedley [20] adopt the same definition for a
corner as [8, 11]: corners are points where the change of image
intensity is high in all directions. Performance is improved by
performing an interpixel approximation to estimate the
intensity change in all directions (unlike the finite number of
directions [11]). Performance and computational demand are
both improved by using a multigrid approach where likely
locations of corners are first found in a low resolution version
of the original image. The analysis [15] shows that it is not
rotationally invariant, is sensitive to noise, and responds too
readily to diagonal edges.

The KLT algorithm [10, 21] is similar to [8]. The
Eigenvectors of similar matrix M encode edge directions, and
the Eigenvalues encode edge magnitudes. A corner is identified
by two strong edges, as a location where the smaller of the
Eigenvalues is large enough. The Eigenvectors are sorted in
decreasing order, and the corners correspond to pixels in that
order with values above a threshold, and with no larger value in
their neighborhood.

Beaudet [3] proposed a determinant operator which has
significant values only near corners. Kitchen and Rosenfeld [9]
proposed methods based on the magnitude of the gradient
direction, the change of direction along the edge, the angle
between most similar neighbors, and turning of the fitted
surface. SUSAN [17] used a circular mask for corner detection,
without using derivatives. It computes the fraction of pixels
within a neighborhood which have similar intensity to the
center pixel. Corners can then be localized by thresholding this
measure and selecting local minima. The position of the center
of gravity is used to filter out false positives.

In [12], the corner points are localized at the maxima of
absolute curvature of the edges. The first step is to extract the
edges from the original image using a Canny detector. The
corner points are tracked through multiple curvature scale
levels to improve localization. Their survey (from 1998)
selected corner detectors in [8, 9, 17] for having good
performance.

Rosten, Porter and Drummond [16] presented a new
heuristic (algorithm called FAST) for fast feature detection
using machine learning. They generalize the detector, allowing
it to be optimized for repeatability, with little loss of efficiency,
and carry out a rigorous comparison of corner detectors based
on the repeatability criterion applied to 3D scenes. The
comparison demonstrates that using machine learning produces
significant improvements in repeatability, yielding a detector
that is both very fast and of very high quality.

It was pointed out in [14] that piecewise linear polygonal
approximation with variable breakpoints will tend to locate
vertices at actual corner points. These points correspond
approximately to the actual or extrapolated intersections of
adjacent line segments of the polygons. The algorithm in [18]
extracts edges as a chain code, performs a polygonal

496496496

approximation on the chains and then searches for the line
segment intersections. Polygonal approximations however do
not preserve many corners because they have a different goal in
mind, simplifying curves by polygons.

The only previous corner detection derived from line
segments was proposed in [6]. It is based on Hough Line
Transform (HLT). LDC [19] discuss at length why their LDC
algorithm is superior to HLT. In [6], a corner is found where
lines intersect, i.e., at large maxima in Hough space [6]. A
generalized Hough transform is used, which replaces each edge
with a line segment. In a manner similar to chaining, a short
line segment can be fitted to the edges, and the corner strength
found by the change in gradient direction along the line
segment. Edge detectors often fail at junctions, so corners can
be defined as points where several edges at different angles end
nearby.

B. Line Detection using Contours
LDC [19] described a line segment detection and extraction

algorithm. It uses a compilation of different image processing
steps such as automatic normalization, Gaussian smooth,
automatic threshold, and Laplacian edge detection to extract
edge contours from colour input images. Contours of each
connected component are divided into short (five pixels)
fragments, which are classified by their orientation into nine
discrete categories. Straight lines are recognized as consecutive
short segments where the same direction was repeated at least
three times. Its plausible accuracy, easy implementation,
simplicity, speed, parameter minimization (only selecting one
in [1,3,5,7] and one in [3,5,…,19]), the ability to divide an edge
into straight line segments using the actual morphology of
objects, inclusion of endpoint information, and the use of the
OpenCV library are key features and advantages of this
solution procedure. This solution gives us a surprisingly more
accurate, faster and simpler answer with fewer parameters than
the widely used Hough Transform (HT) based algorithm. This
line detection algorithm is robust to image transformations
such as rotation, scaling and translation, and to the selection of
the remaining two parameter values, while HT is very sensitive
to its 7 parameter values which are also time consuming to
select optimally.

C. Line segment intersections and nearest neighbor search
Our proposed algorithm makes use of two well know

technique from computational geometry, line segment
intersections and nearest neighbour search. All pair wise
intersections of n line segments in a plane can be easily
examined in O(n2) by a brute-force algorithm that will check
each pair of lines for their intersection. It will also return the
intersections in unsorted order. To achieve a faster solution, we
implemented instead a plane sweep algorithm [7]. This
algorithm runs in O(n log n + I log n) where I is the number of
intersections found [7]. It moves a (sweep) line across the plane
to find intersection points. All intersections to the left of the
sweep line have already been detected. The status of this sweep
line is the set of segments currently intersecting it. This status
changes as the sweep line moves to the right. Any time the
sweep line passes over an event point (endpoint of a segment or
an intersection point), the sweep line stops and updates this

status. Because the event points are processed in sorted order,
the intersections are found in sorted order. Two line segments
cannot intersect unless they are next to each other. Thus, we
keep track of the vertical ordering of the line segments and
only test neighbouring segments for intersection.

In nearest neighbour search, given a set of N points, the
goal is to find a point that is nearest to a query point q with
minimal time per each search. This search can be done
efficiently by using the tree properties to quickly eliminate
large portions of the search space. N points are organized in a
kd-tree. Every node in a kd-tree splits into sub-trees and is
associated with one of the dimensions. Starting with the root
node, the algorithm moves down the tree recursively, and saves
the reached leaf node point as the "current best". The algorithm
unwinds the recursion of the tree; if the current node is closer
than the current best, then it becomes the current best. If there
are nearer points on the other side of the splitting plane, the
algorithm moves down the other branch of the tree from the
current node looking for closer points, following the same
recursive process as the entire search [5, 13] kd-tree can be
built in O(N log N) time. Each search requires O(log N) time on
average and O(root(N)) time in the worst case [13]. Inserting
and removing nodes from the kd-tree requires O(log N) time.
The kd-tree is implemented in many libraries including
OpenCV/EmguCV.

III. CORNER DETECTION ALGORITHM

We define a corner as the intersection of two or more
segments. Further, we require that there is no other corner
nearby (up to a certain threshold pixel distance E). Therefore, a
corner is a structure that joins a list of segments in the image
space. Typical junctions have shapes of the general form of the
letters T, X, L, Y, and there are also rare junctions with five or
more line segments. Each junction is the intersection of two or
more line segments. The endpoints of line segments that are
not close to any other line segment will be also considered as
corners. Therefore a single line segment detected in an image
will output two corners, one from each of its endpoints. The
main problem is to determine corners that are shared by several
line segments which should be reported only once.

We first apply the LDC algorithm [19] to an image to
produce a set of line segments. The endpoints of each line
segment are the initial set of corners. However, we would like
to avoid duplicate reporting of the same corner at T, L, X and
Y junctions. Also, we would like to link each unique corner
with all corresponding line segments at the junction. We then
first extend each line segment by E pixels on both sides, where
E is a parameter. By doing this, line segments that originally
did not cross each other but were in the vicinity (and to a
human observer naturally correspond to a single corner) will
now cross each other. These crossings can be detected by a
suitable line intersection algorithm. Subsequently, other
endpoints, which are near an already identified corner, can be
merged with this one, using a nearest neighbor algorithm to
find the distance between a candidate corner and nearest
existing one to it.

497497497

Our algorithm, called CLDC (Corners from LDC
algorithm), has three configuration parameters. Two come from
the LDC algorithm: Gaussian Kernel Size (GKS) and Laplace
Aperture Size (LAS). The third input parameter is the number
of pixels E that each line segment is extended in both
directions. No modifications will be done to the initial step of
the algorithm (LDC line segment computation [19]). We will
only process its output further, to compute the intersections.
The CLDC algorithm is illustrated in Figure 1 on a simple
example of an X junction (Fig. 1a)). The LDC algorithm
originally produces 8 line segments here: a, b, c, d, e, f, g, h
(Fig. 1b)). All of them have the junction as one endpoint, and
each ‘leg’ of X is identified twice by the LDC algorithm [19].
This junction may physically be four different pixels or just
two, if three endpoints are physically the same pixel.

Figure 1. a) X junction; b) 8 reported line segments from LDC [19]; c)
extended line segments and multiple intersection detection; d) single corner at
junction by eliminating other near intersections and endpoints; e) five detected

corners

Each line segment is extended, and line segments intersect
at or near the junction (Fig. 1c)). All line segment intersections
are discovered by applying the plane sweep algorithm. Each
discovered intersection point will attempt to enter the (2-
dimensional) kd-tree. However if this kd-tree already contains
a corner that is near (distance at most E pixels) the discovered
intersection then the intersection is not entered into the tree.
That way, the kd-tree contains only corners, so that no two
corners are near each other. Multiple occurrences of the same
intersection and nearby endpoints are therefore eliminated and
a single corner is identified at the junction (Fig. 1d)). During
the elimination process, an already identified corner may
receive more links to other line segments. The CLDC
algorithm in the end reports five corners, each linked to
corresponding line segments (Fig. 1e)).

 After inserting all intersection points (corners) into the
kd-tree, CLDC also inserts the original endpoints into the same
tree. Those that are close to the new corners will be eliminated
because they are closer than E to the already identified corners
(actual intersections). After entering all intersections, the
endpoints of the line segments that are not junctions will be
entered into the same kd-tree without any ‘resistance’ from
existing corners, and therefore will also become corners. That
is, they generate corners from original such endpoints, not from

extended ones. At the end, corners are exactly the points in the
final kd-tree. The pseudo-code of the algorithm can be
expressed as follows.

CLDC Algorithm: Input: Color Image, GKS, LGS, and E

Output: list of corners, each with a list of adjacent segments.

Begin:
old_lines ← LDC(Image,GKS, LGS)
new_lines ← empty; kdtree← empty
For each segment in old_lines:
 enlarge segment and insert it into new_lines.
corners ← PlaneSweep(new_lines) // may be sorted first

(not mandatory)
For each point from corners:

Insert point into kdtree if the nearest corner already
there is at distance > E, else link segment containing the
point to corner

For each endpoint old_corner from old_lines:
Neighbor ← nearest corner to old_corner inside kdtree
If distance between neighbor and old_corner < E:

Merge adjacent list of neighbor and old_corner into
neighbor

 add corresponding line segment links to neighbor
Else:

 Insert old_corner in kdtree.
Return kdtree (list of corners).

End.

The time complexity of the LDC algorithm [19] is O(N),
where N is the number of pixels in the image. Creating the new
list of segments by adding E pixels to its endpoints can be done
in O(s) time, where s is the number of segments from LDC
output. There are n=2s endpoints. N >> n because only
representative line segments are extracted from the image. The
intersections of n line segments can be found by the plane
sweep algorithm in O(n log n + I log n) where I is the number
of intersections found. When n2<<N, a straightforward O(n2)
pairwise line segment intersection can be also applied without
affecting overall time complexity. Finding the nearest corner
and inserting the corners in the kd-tree will add O(n root(n)) to
the complexity. Retrieving all the points from the kd-tree will
be O(n). Finally the total complexity of our solution will be
O(N+I log n + n root(n)). Since N >>n, the running time is
dominated by the line segment extraction algorithm LDC [19],
and the algorithm presented here does not increase time
complexity.

IV. EXPERIMENTAL DATA
We compared our CLDC corner detection algorithm with

some existing algorithms, by Moravec [11], Harris/Presley [8],
Trajkovic [20], SUSAN [17], and FAST [16]. These
algorithms selected for comparison are well-known and most
frequently used in literature [15]. The comparison will be made
using measures of robustness to image transformation such as
rotating, blur, and adding noise. We ran two experiments.

In the first experiment we will measure the Reliability,
Accuracy and Error, on a sample image from [15]. Let D be the
exact number of corners to be detected, and let F be the number
of corners actually reported. Reported corners are divided into

498498498

true positives P and true negatives N so that F=P+N. The
number of missing corners M represents corners not identified
by a given algorithm. Reliability is then defined as P/F (thus
100% accuracy is obtained when N=0), accuracy is F/D (thus
100% accuracy means that all corners are detected), and error
is defined as N/D.

Figure 2. Sample S1: Artificial test image containing different corner types

[15]

Figure 3. Sample S1b: Increasing P may drastically increase N.

Figure 3 illustrates the sensitivity of some existing
algorithms to the selection of parameters. An attempt to
increase P results in a drastic increase of N in sample S1b.
SUSAN [17] increases N along horizontal and vertical lines,
while others increase N along diagonal lines. We observe that
Harris/Presley [8] and SUSAN [17] were capable of detecting
more P and less N than Moravec [11] and Trajkovic [20].
FAST [16] and CLDC give a more stable output for this
sample, not detecting many false negatives.

Figure 4. Sample S2: The same image rotated 30 degrees clockwise

Figure 5. Sample S3: Blurring the same image

499499499

Figure 6. Sample 4: Adding Gaussian noise to the image

The number of parameters in each algorithm is similar.
Trajkovic [20] has 5 input parameters, Harris/Presley [8] has 4,
Moravec [11], SUSAN [17], FAST [16] and CLDC have 3
input parameters each. For examples here with CLDC, E=5
pixels to extend lines, GKS (Gaussian Kernel size) to blur the
image was not applied, while LKS (Laplace kernel size) was
applied with values of 3 or 5. All algorithms are quite fast, and
there is no significant difference in speed among them. FAST
[16] claimed to be the fastest one among existing ones.
SUSAN [17] is slower than Moravec [11] and Trajkovic [20]
while Harris/Presley [8] is the slowest one [15]. Our CLDC
algorithm is based on the straight line detection algorithm LDC
which is faster than the Hough Transform based alternative
[SSN], and additional time to detect corner is negligible
compared to the time to detect straight lines. In our
experiments, the running times were about 0.16sec for
SUSAN, 0.04sec for FAST, and 0.05sec for CLDC per image.

Our test set consists of a sample image (S1) which is
rotated (S2), blurred (S3) and has Gaussian noise added (S4).
Blurring and noise was performed on sample S1. This example
shows the overall superiority of our algorithm in reliability,
accuracy and error measures, compared to the solutions
currently used in literature: Harris/Presley (HP), Moravec (M),
Trajkovic (T), SUSAN, and FAST.

We then calculated the averages and 95% confidence
intervals over the above samples, for each of the three
measures and tested algorithms. The results are in Table 2.

TABLE I. RELIABILITY, ACCURACY AND ERROR RATES FOR SAMPLE
IMAGES AND THEIR TRANSFORMATIONS

 D F M P N Rel % Acc % Err %

S1
CLDC 77 72 5 72 0 100 94 0
HP 77 60 18 59 1 98 77 1
M 77 28 51 26 2 93 34 3
T 77 28 49 28 0 100 36 0
SUSAN 77 61 16 61 0 100 79 0
FAST 77 58 19 58 0 100 75 0

 D F M P N Rel % Acc % Err %

S1b
HP 77 158 16 61 97 39 79 126
T 77 188 16 60 128 32 78 166
M 77 164 16 60 104 37 78 135
SUSAN 77 222 16 61 161 27 79 209

S2
CLDC 81 77 7 74 3 96 91 4
HP 81 102 3 78 24 76 96 30
M 81 43 47 33 10 77 41 12
T 81 36 47 34 2 94 42 2
SUSAN 81 119 1 80 30 67 99 37
FAST 81 33 48 33 0 100 41 0

S3
CLDC 77 76 1 76 0 100 99 0
HP 77 57 40 37 20 65 48 26
M 77 27 50 23 4 85 30 5
T 77 59 46 31 28 53 40 36
SUSAN 77 56 29 49 7 88 64 9
FAST 77 32 47 30 2 94 39 2

S4
CLDC 77 35 43 34 1 97 44 1
HP 77 67 46 31 36 46 40 47
M 77 39 53 24 15 62 31 19
T 77 50 52 25 25 50 32 32
SUSAN 77 53 48 29 24 55 38 31
FAST 77 30 47 30 0 100 39 0

TABLE II. AVERAGES AND CONFIDENCE INTERVALS OF TEST SET

Algorithm Reliability Accuracy Error

CLDC 0.98 ±0.02 0.82 ±0.25 0.01 ±0.02
HP 0.71 ±0.21 0.65 ±0.25 0.26 ±0.18
M 0.79 ±0.13 0.34 ±0.05 0.10 ±0.07
T 0.74 ±0.26 0.38 ±0.04 0.18 ±0.19
SUSAN 0.77 ±0.20 0.70 ±0.25 0.19 ±0.17
FAST 0.98 ±0.03 0.48 ±0.18 0.01 ±0.01

We define repeatability (Rep) as the ratio Per=P12/P1
where P1 is the number of true positives (correctly identified
corners) in the original image while P12 is the number of
corners among them that are also identified as corners in the
transformed image. The same definition was used in [16, 1].
This measure is automatic as it does not depend on human
perception of what are true corners. Note that measures that
involve human evaluation of corners were considered in [4].
Thus it measures the ratio of correctly identified corners from
the original image that are also identified in the transformed
image. The joint accuracy (JA) is defined as
JA=(P1+P2)/(D1+D2), where P and D for both images are
defined above, and index 1 or 2 refers to the original and
transformed image, respectively. Joint accuracy measures the
total amount of identified corners with respect of total number
of really existing corners in both images. Finally, we also
compute the added noise rate (AN) as N2/P12.

500500500

TABLE III. REPEATABILITY, JOINT ACCURACY, ADDED NOISE RATES FOR
TEST SET

 Algorithm
Rotation Blur Noise

Rep JA AN Rep JA AN Rep JA AN
CLDC 92 86 12 100 100 0 47 44 3
H 98 75 41 93 71 0 53 40 116
M 96 32 28 96 30 9 88 30 61
T 100 36 4 100 36 11 89 32 96
SUSAN 100 79 49 80 64 14 46 38 39
FAST 52 39 0 53 40 6 53 40 0

Since none of the above measures is sufficient alone, we
define a combined index measure that appears useful as a
single measure, as index=Per*JA-AN. Therefore the index
increases with the repeatability and joint accuracy but
decreases with the added noise rate. This index measure also
confirms the superiority of our scheme compared to others, as
seen in Table 4.

TABLE IV. AN RANKING OF ALGORITHMS

Algorithm Index
CLDC 66.45 %
T 32.79 %
HP 32.67 %
SUSAN 30.04 %
FAST 20.15 %
M 3.22 %

Figure 7. Corners detected from real imagery

We also show some examples from real images, with the
corners detected by each method. In the first example in Figure
7, all methods except our CLDC have too many corners
detected on the camera in the image which are in close
proximity to each other, and apparently missing corners along
the man’s borders and in the background. The CLDC algorithm
balances the corners along the camera, man and background,
which appear evenly spread along the corresponding
boundaries, thus resembling their shapes. The house image also

501501501

has regions saturated with corners, yet some important corners
are missing, by all methods except our CLDC.

V. CONCLUSION
We described here a simple, fast, relatively parameterless

and robust algorithm for detecting corners in an image. The
time complexity for our CLDC algorithm is dominated by
O(N) where N is the total number of pixels, and it is then not
possible, for an image as input, to have an asymptotically faster
algorithm. We demonstrate its higher accuracy and
repetitiveness (with respect to image transformations such as
rotation, blurring, and Gaussian noise) compared to other
solutions frequently used.

We defined also a novel index measure (which
encompasses repeatability, added noise, and joint accuracy)
that gives a combined measure of ‘goodness’ of an algorithm,
and again show that our algorithm is better than other existing
ones. Finally, our algorithm is conceptually very simple to
understand, probably the simplest among all existing ones. It
merely defines corners as intersections of two or more line
segments, and relies on a natural extraction of line segments
which extracts them as repeated edge pixels along the same
direction. This is the ultimate advantage of CLDC for its use in
practice.

Qualitative and quantitative properties of our CLDC
algorithm, and its simplicity, provide a basis for its applications
in stereo matching, object detection/recognition, motion
tracking, image database retrieval, robot navigation etc.
Further, it provides output not present in other algorithms,
where each corner is linked directly with all line segments
defining it. This enables further applications, for example
extracting polygonal boundaries of all shapes in the image and
shape analysis.

VI. REFERENCES
[1] M. Awrangjeb, G. Lu, Robust Image Corner Detection Based on

the Chord-to-Point Distance Accumulation Technique, IEEE
Transactions on Multimedia, Vol. 10, No. 6, Oct. 2008 1059-
1072.

[2] Baumberg, "Reliable feature matching across widely separated
views", Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition: pages I: 1774--1781. (2000)

[3] P.R. Beaudet, “Rotationally invariant image operators”. Fourth
International Conference on Pattern Recognition, pp. 579–583,
1978.

[4] Y. Bastanlar, Y. Yardimci, “Corner Validation based on
Extracted Corner Properties”, Computer Vision and Image
Understanding, 112 (2008) 243-261.

[5] T. Cormen, C. Leiserson, R. Rivest, ”Introduction to
Algorithms”, McGraw-Hill Companies, 768 pages. Chapter
10.March 1990.

[6] E. Davies, “Application of the Generalized Hough Transform to
Corner Detection’, Proc. IEE Computers and Digital
Techniques, vol. 135, no. 1, pp. 49-54, 1988.

[7] M. De Berg, O. Cheong, M. Van Kreveld, M. Overmars,
”Computational Geometry Algorithms and Applications”, 3rd
Edition. Springer, Apr. 2008.

[8] C. Harris, M. Stephens, “A Combined Corner and Edge
Detector”, Proc. Alvey Vision Conf., Univ. Manchester, pp.
147-151, 1988.

[9] L. Kitchen, A. Rosenfeld, “Gray-level corner detection” Pattern
Recognition Letters, vol. 1, no. 2, pp. 95-102, 1982.

[10] B. Lucas, T. Kanade, “An Iterative Image Registration
Technique with an Application to Stereo Vision”, International
Joint Conference on Artificial Intelligence, pp. 674-679, 1981.

[11] H. Moravec, “Towards Automatic Visual Obstacle Avoidance”,
International Joint Conference on Artificial Intelligence, pp.
584, 1977.

[12] F. Mokhtarian, R. Suomela, “Robust image corner detection
through curvature scale-space,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 12, pp. 1376–
1381, 1998.

[13] J. O'Rourke, “Computational Geometry in C” (2nd Ed.),
Cambridge University Press 1998.

[14] T. Pavlidis, Structural Pattern Recognition, Berlin, Heidelberg,
NY: Springer-Verlag, 1977.

[15] J. Parks, J.P. Gravel, Corner detectors, University of McGill,
www.cim.mcgill.ca/~dparks/CornerDetector/index.htm.

[16] E. Rosten, R. Porter, T. Drummond, “Faster and Better: A
Machine Learning Approach to Corner Detection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol.
32, No. 1, pp. 105-119, January 2010.

[17] S. Smith, M. Brady, “SUSAN - A New Approach to Low Level
Image Processing”, International Journal of Computer Vision,
Vol. 23, No. 1, pp. 45-78, 1997.

[18] H.T. Sheu, W.C. Hu, “A rotationally invariant two-phase
scheme for corner detection”, Pattern Recognition, Vol. 28, pp.
819-828, 1996.

[19] A. Solis-Montero, A. Nayak, M. Stojmenovic, N. Zaguia,
“Robust Line Extraction Based on Repeated Segment Directions
on Image Contours”, IEEE Symposium: Computational
Intelligence for Security and Defense Applications (CISDA),
July 8-10, 2009.

[20] M. Trajkovic, M. Hedley, “Fast Corner Detection”, Image and
Vision Computing, Vol. 16, No. 2, pp. 75-87, 1998.

[21] C. Tomasi, T. Kanade, “Detection and Tracking of Point
Features”, Carnegie Mellon University Technical Report CMU-
CS-91-132, April 1991.

[22] T. Tuytelaars, K. Mikolajczyk, “Local Invariant Feature
Detectors: A Survey”, Foundations and Trends in Computer
Graphics and Vision, Vol. 3, No. 3, pp. 177–280, 2007.

[23] Z. Zheng, H. Wang and E. Teoh, “Analysis of gray level corner
detection”, Pattern Recognition Letters, Vol. 20, pp. 149-162,
1999.

502502502

