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Abstract. We define corner points in an image as the 
intersections among detected straight line segments, and propose 
an algorithm that detects corners from such a definition. Our 
corner detection algorithm CLDC then makes use of the LDC 
(Line Detection using Contours) algorithm from [19], which 
outputs the list of all detected line segments together with their 
endpoints. Each line segment is extended in a post-processing 
step. CLDC (Corners from LDC) then finds corners in O((n+I) 
log n) time, where n and I are the number of endpoints the 
intersections of line segments, respectively. Detected corners are 
linked via line segments that define them. Such an output of the 
corner detection algorithm is a novel concept. The algorithm is 
comparable in time complexity with other algorithms, while 
providing more information about the line segments in the image. 
CLDC is robust to image transformations, such as rotation and 
translations. Our CLDC is compared to some existing algorithm, 
and its advantages are demonstrated.  

Keywords: Corner detection, lines, sweeping algorithm, shape 
recognition, image processing. 

I. INTRODUCTION 
Many computer vision approaches for extracting features 

and inferring image content are based on detecting some points 
of interest. There is a plethora of interest point definitions in 
literature, each motivated by particular applications. In this 
article, we are interested in detecting corners in images, as 
particular points of interest that are frequently used in stereo 
matching, panoramic photographs, object 
detection/recognition, motion tracking, image database 
retrieval and robot navigation. For instance, corner detection 
algorithms enable a fast relationship between interest points 
among different images of the same object. It is easier to relate 
pixels instead of some regions with certain heights and widths. 
For example, motion is ambiguous at an edge, but 
unambiguous at a corner. Shapes can be approximately 
reconstructed from their corners. 

 Corners in images can be defined in variety of ways. Each 
corner detection algorithm normally uses its own definition, 
and it is normally the one that closely resembles what the 
algorithm itself detects as corners. The goal is always to 
reproduce as closely as possible what a human eye would 
consider to be a corner. A corner can be defined as the 
intersection of two or more edges. Also, a corner can be 
defined as point where there are two dominant and different 
edge directions in a local neighborhood of the point, the local 
minimum or maximum intensity of a point, line ending or point 
on a curve where the curvature is locally maximal.  

The repeatability and efficiency of a corner detector 
determines how likely it is to be useful in a real-world 

application. Repeatability is important because the same scene 
viewed from different positions should yield features which 
correspond to the same real-world 3D locations. Efficiency is 
important because this determines whether the detector 
combined with further processing can operate at an acceptable 
frame rate. 

Existing corner detectors are usually not very robust and 
often require human supervision. Quality of a corner detector is 
often judged based on its ability to detect the same corner in 
multiples images, like different lighting, rotation, translation 
and other transforms. The Computational time needed to detect 
corners is also important, and faster algorithms are preferred.  

Recent detailed surveys of a number of corner detection 
algorithms were given in [16, 22]. Most popular schemes are 
proposed by Moravec [11], Beaudet [3], Kitchen & Rosenfeld 
[9], Harris & Sephens [8], Kanade, Lucas and Tomasi [10, 21], 
Smith and Brady (SUSAN [17]), Mokhatrian and Suomela 
(Curvature Scale Space [12]), Trajkovic and Hedley [20], 
Zheng, Wang and Teoh [23], Davies [6] and Rosten, Porter and 
Drummond (FAST [16]). Existing algorithms are roughly 
divided into those that detect corners from grayscale images, 
and from digital curves (where contours are extracted first). 
Grayscale image based algorithms usually detect interest points 
other than corners, and mostly search for lightness and 
brightness contrasts in images, find local maxima in 
differentiate geometry operators, or compute the determinant of 
the Hessian matrix and second order derivates. The algorithm 
in [8] uses a local window in the image to determinate the 
average change of intensity by shifting the window in various 
positions. Only the Curvature Space Scale (CSS) algorithm 
[12] (improved by Awrangjeb and Lu [1]) explicitly uses the 
contour to detect corners, although by a different approach 
from the one described in this article.  

We define corners as the intersections of detected line 
segments. This corner definition was also used only in [6] 
where lines are detected using the Hough line Transform. Our 
algorithm preserves the idea of a corner as the intersection of 
two or more straight lines. Our corner detection algorithm 
makes use of the LDC (Line Detection using Contours) 
algorithm from LDC [19]. The LDC algorithm outputs the list 
of all detected line segments together with their endpoints. 
Each line segments is extended here by E pixels before further 
processing. Our CLDC algorithm then finds the intersections of 
these extended line segments using the plane sweep algorithm, 
and eliminates duplicates (with the help of a kd-tree structure) 
by preserving only the corners obtained by the plane sweep and 
eliminating other corners at distance less than E pixels. The 
algorithm runs in O((n+I) log n) time, where n and I are the 
number of endpoints, and the intersections of line segments, 
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respectively. It is comparable in time complexity with other 
algorithms, while providing more information about the line 
segments in the image. Our definition of corner as the 
intersection of line segments corresponds to human perception 
of corners.  Detected corners are linked via line segments that 
define them. Each corner is linked to at least another corner in 
the image. Such an output of a corner detection algorithm is a 
novel concept in computer vision and image processing. Our 
CLDC (Corners from LDC) algorithm is robust to image 
transformations, such as rotation and translations. The 
additional benefit of our algorithm is to report corners together 
with the line segments they belong to. 

In section 2 we present a literature review on corner 
detection and describe some existing techniques used in our 
CLDC algorithm. Section 3 explains our CLDC algorithm and 
the modifications to the LDC output. Experimental data in 
Section 4 compares our CLDC algorithm with some of existing 
and widely used algorithms.   

II. LITERATURE REVIEW 

A. Existing Corner Detection Algorithms 
Moravec [11] defined the concept of "points of interest" as 

distinct regions in images in 1977 and proposed to use them to 
find matching regions in consecutive image frames. This low-
level processing step helped to determine the existence and 
location of objects in the vehicle's environment. The concept in 
[11] included corner detectors since interest points, like 
corners, were the points where there is a large intensity 
variation in every direction.  A small square window (3x3, 5x5, 
or 7x7 pixels) centered at P is shifted by one pixel in each of 
the eight principle directions.  The intensity variation for a 
given shift is calculated by taking the sum of squares of 
intensity differences of corresponding pixels in these two 
windows. Intensity variation at P is the minimum intensity 
variation calculated over all shifts. The Moravec operator can 
be used to give a measure of cornerness to each pixel in the 
image. Corners are local maxima, except those with cornerness 
value below a threshold. This simple corner detector is now 
considered generally obsolete [15]. It is computationally 
efficient but is not rotationally invariant, is susceptible to 
reporting false corners along edges and at isolated pixels and is 
sensitive to noise.  

The Harris/Plessey operator [8] allows an estimate of the 
intensity variation to be calculated in any direction, thus 
generalizing Moravec’s operator. The cornerness measure is 
reformulated to consider the variation between the intensity 
variation measures in different directions. Second image 
derivatives are convoluted by the Gaussian window. The 
resulting matrix M contains all the differential operators 
describing the geometry of the image surface at a given point.  
The Eigenvalues of M will be proportional to the principle 
curvatures of the image surface and form a rotationally 
invariant description of M. The cornerness measure is defined 
via the determinant and trace of M. However, since the 
components of M are estimated using only the horizontal and 
vertical gradients, they are not rotationally invariant. Despite 
the high computational demand, this algorithm is widely used 
in practice. It is sensitive to noise since it relies on gradient 

information, has poor localization on many junction types, and 
is not rotationally invariant [15].  The significance of poor 
localization of certain junction types is application dependent 
and the widespread use of this algorithm suggests this 
limitation can be overcome.   

Trajkovic and Hedley [20] adopt the same definition for a 
corner as [8, 11]: corners are points where the change of image 
intensity is high in all directions.  Performance is improved by 
performing an interpixel approximation to estimate the 
intensity change in all directions (unlike the finite number of 
directions [11]).  Performance and computational demand are 
both improved by using a multigrid approach where likely 
locations of corners are first found in a low resolution version 
of the original image.  The analysis [15] shows that it is not 
rotationally invariant, is sensitive to noise, and responds too 
readily to diagonal edges.   

The KLT algorithm [10, 21] is similar to [8]. The 
Eigenvectors of similar matrix M encode edge directions, and 
the Eigenvalues encode edge magnitudes. A corner is identified 
by two strong edges, as a location where the smaller of the 
Eigenvalues is large enough. The Eigenvectors are sorted in 
decreasing order, and the corners correspond to pixels in that 
order with values above a threshold, and with no larger value in 
their neighborhood.  

Beaudet [3] proposed a determinant operator which has 
significant values only near corners. Kitchen and Rosenfeld [9] 
proposed methods based on the magnitude of the gradient 
direction, the change of direction along the edge, the angle 
between most similar neighbors, and turning of the fitted 
surface. SUSAN [17] used a circular mask for corner detection, 
without using derivatives. It computes the fraction of pixels 
within a neighborhood which have similar intensity to the 
center pixel. Corners can then be localized by thresholding this 
measure and selecting local minima. The position of the center 
of gravity is used to filter out false positives. 

In [12], the corner points are localized at the maxima of 
absolute curvature of the edges. The first step is to extract the 
edges from the original image using a Canny detector. The 
corner points are tracked through multiple curvature scale 
levels to improve localization. Their survey (from 1998) 
selected corner detectors in [8, 9, 17] for having good 
performance. 

Rosten, Porter and Drummond [16] presented a new 
heuristic (algorithm called FAST) for fast feature detection 
using machine learning. They generalize the detector, allowing 
it to be optimized for repeatability, with little loss of efficiency, 
and carry out a rigorous comparison of corner detectors based 
on the repeatability criterion applied to 3D scenes. The 
comparison demonstrates that using machine learning produces 
significant improvements in repeatability, yielding a detector 
that is both very fast and of very high quality.  

It was pointed out in [14] that piecewise linear polygonal 
approximation with variable breakpoints will tend to locate 
vertices at actual corner points. These points correspond 
approximately to the actual or extrapolated intersections of 
adjacent line segments of the polygons. The algorithm in [18] 
extracts edges as a chain code, performs a polygonal 

496496496



approximation on the chains and then searches for the line 
segment intersections. Polygonal approximations however do 
not preserve many corners because they have a different goal in 
mind, simplifying curves by polygons.  

The only previous corner detection derived from line 
segments was proposed in [6]. It is based on Hough Line 
Transform (HLT). LDC [19] discuss at length why their LDC 
algorithm is superior to HLT. In [6], a corner is found where 
lines intersect, i.e., at large maxima in Hough space [6]. A 
generalized Hough transform is used, which replaces each edge 
with a line segment. In a manner similar to chaining, a short 
line segment can be fitted to the edges, and the corner strength 
found by the change in gradient direction along the line 
segment. Edge detectors often fail at junctions, so corners can 
be defined as points where several edges at different angles end 
nearby. 

B. Line Detection using Contours 
LDC [19] described a line segment detection and extraction 

algorithm. It uses a compilation of different image processing 
steps such as automatic normalization, Gaussian smooth, 
automatic threshold, and Laplacian edge detection to extract 
edge contours from colour input images. Contours of each 
connected component are divided into short (five pixels) 
fragments, which are classified by their orientation into nine 
discrete categories. Straight lines are recognized as consecutive 
short segments where the same direction was repeated at least 
three times. Its plausible accuracy, easy implementation, 
simplicity, speed, parameter minimization (only selecting one 
in [1,3,5,7] and one in [3,5,…,19]), the ability to divide an edge 
into straight line segments using the actual morphology of 
objects, inclusion of endpoint information, and the use of  the 
OpenCV library are key features and advantages of this 
solution procedure. This solution gives us a surprisingly more 
accurate, faster and simpler answer with fewer parameters than 
the widely used Hough Transform (HT) based algorithm. This 
line detection algorithm is robust to image transformations 
such as rotation, scaling and translation, and to the selection of 
the remaining two parameter values, while HT is very sensitive 
to its 7 parameter values which are also time consuming to 
select optimally.  

C. Line segment intersections and nearest neighbor search 
Our proposed algorithm makes use of two well know 

technique from computational geometry, line segment 
intersections and nearest neighbour search. All pair wise 
intersections of n line segments in a plane can be easily 
examined in O(n2) by a brute-force algorithm that will check 
each pair of lines for their intersection. It will also return the 
intersections in unsorted order. To achieve a faster solution, we 
implemented instead a plane sweep algorithm [7]. This 
algorithm runs in O(n log n + I log n) where I is the number of 
intersections found [7]. It moves a (sweep) line across the plane 
to find intersection points. All intersections to the left of the 
sweep line have already been detected. The status of this sweep 
line is the set of segments currently intersecting it. This status 
changes as the sweep line moves to the right. Any time the 
sweep line passes over an event point (endpoint of a segment or 
an intersection point), the sweep line stops and updates this 

status. Because the event points are processed in sorted order, 
the intersections are found in sorted order. Two line segments 
cannot intersect unless they are next to each other. Thus, we 
keep track of the vertical ordering of the line segments and 
only test neighbouring segments for intersection. 

In nearest neighbour search, given a set of N points, the 
goal is to find a point that is nearest to a query point q with 
minimal time per each search. This search can be done 
efficiently by using the tree properties to quickly eliminate 
large portions of the search space. N points are organized in a 
kd-tree. Every node in a kd-tree splits into sub-trees and is 
associated with one of the dimensions. Starting with the root 
node, the algorithm moves down the tree recursively, and saves 
the reached leaf node point as the "current best". The algorithm 
unwinds the recursion of the tree; if the current node is closer 
than the current best, then it becomes the current best. If there 
are nearer points on the other side of the splitting plane, the 
algorithm moves down the other branch of the tree from the 
current node looking for closer points, following the same 
recursive process as the entire search [5, 13] kd-tree can be 
built in O(N log N) time. Each search requires O(log N) time on 
average and O(root(N)) time in the worst case [13]. Inserting 
and removing nodes from the kd-tree requires O(log N) time. 
The kd-tree is implemented in many libraries including 
OpenCV/EmguCV. 

III. CORNER DETECTION ALGORITHM 
 

We define a corner as the intersection of two or more 
segments. Further, we require that there is no other corner 
nearby (up to a certain threshold pixel distance E). Therefore, a 
corner is a structure that joins a list of segments in the image 
space. Typical junctions have shapes of the general form of the 
letters T, X, L, Y, and there are also rare junctions with five or 
more line segments. Each junction is the intersection of two or 
more line segments.  The endpoints of line segments that are 
not close to any other line segment will be also considered as 
corners. Therefore a single line segment detected in an image 
will output two corners, one from each of its endpoints. The 
main problem is to determine corners that are shared by several 
line segments which should be reported only once. 

We first apply the LDC algorithm [19] to an image to 
produce a set of line segments. The endpoints of each line 
segment are the initial set of corners. However, we would like 
to avoid duplicate reporting of the same corner at T, L, X and 
Y junctions. Also, we would like to link each unique corner 
with all corresponding line segments at the junction. We then 
first extend each line segment by E pixels on both sides, where 
E is a parameter. By doing this, line segments that originally 
did not cross each other but were in the vicinity (and to a 
human observer naturally correspond to a single corner) will 
now cross each other. These crossings can be detected by a 
suitable line intersection algorithm. Subsequently, other 
endpoints, which are near an already identified corner, can be 
merged with this one, using a nearest neighbor algorithm to 
find the distance between a candidate corner and nearest 
existing one to it. 
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Our algorithm, called CLDC (Corners from LDC 
algorithm), has three configuration parameters. Two come from 
the LDC algorithm: Gaussian Kernel Size (GKS) and Laplace 
Aperture Size (LAS).  The third input parameter is the number 
of pixels E that each line segment is extended in both 
directions. No modifications will be done to the initial step of 
the algorithm (LDC line segment computation [19]). We will 
only process its output further, to compute the intersections. 
The CLDC algorithm is illustrated in Figure 1 on a simple 
example of an X junction (Fig. 1a)). The LDC algorithm 
originally produces 8 line segments here: a, b, c, d, e, f, g, h 
(Fig. 1b)). All of them have the junction as one endpoint, and 
each ‘leg’ of X is identified twice by the LDC algorithm [19]. 
This junction may physically be four different pixels or just 
two, if three endpoints are physically the same pixel. 

 

Figure 1.  a) X junction; b) 8 reported line segments from LDC [19]; c) 
extended line segments and multiple intersection detection; d) single corner at 
junction by eliminating other near intersections and endpoints; e) five detected 

corners 

Each line segment is extended, and line segments intersect 
at or near the junction (Fig. 1c)). All line segment intersections 
are discovered by applying the plane sweep algorithm. Each 
discovered intersection point will attempt to enter the (2-
dimensional) kd-tree. However if this kd-tree already contains 
a corner that is near (distance at most E pixels) the discovered 
intersection then the intersection is not entered into the tree. 
That way, the kd-tree contains only corners, so that no two 
corners are near each other. Multiple occurrences of the same 
intersection and nearby endpoints are therefore eliminated and 
a single corner is identified at the junction (Fig. 1d)). During 
the elimination process, an already identified corner may 
receive more links to other line segments. The CLDC 
algorithm in the end reports five corners, each linked to 
corresponding line segments (Fig. 1e)). 

 After inserting all intersection points (corners) into the 
kd-tree, CLDC also inserts the original endpoints into the same 
tree. Those that are close to the new corners will be eliminated 
because they are closer than E to the already identified corners 
(actual intersections). After entering all intersections, the 
endpoints of the line segments that are not junctions will be 
entered into the same kd-tree without any ‘resistance’ from 
existing corners, and therefore will also become corners. That 
is, they generate corners from original such endpoints, not from 

extended ones. At the end, corners are exactly the points in the 
final kd-tree. The pseudo-code of the algorithm can be 
expressed as follows. 

CLDC Algorithm: Input: Color Image, GKS, LGS, and E 

Output: list of corners, each with a list of adjacent segments. 

Begin: 
old_lines  ←  LDC(Image,GKS, LGS)  
new_lines ← empty; kdtree← empty 
For each segment  in old_lines: 
 enlarge segment and insert it into new_lines. 
corners ← PlaneSweep(new_lines)  // may be sorted first 

(not mandatory) 
For each point from corners:  

Insert point into kdtree if the nearest corner already 
there is at distance > E, else link segment containing the 
point to corner 

For each endpoint old_corner from old_lines: 
Neighbor ← nearest corner to old_corner  inside kdtree 
If distance between neighbor and old_corner < E: 

Merge adjacent list of neighbor and old_corner  into 
neighbor 

 add corresponding line segment links to neighbor 
Else: 

 Insert old_corner in kdtree. 
Return kdtree (list of corners).  

End. 

The time complexity of the LDC algorithm [19] is O(N), 
where N is the number of pixels in the image. Creating the new 
list of segments by adding E pixels to its endpoints can be done 
in O(s) time, where s is the number of segments from LDC 
output. There are n=2s endpoints. N >> n because only 
representative line segments are extracted from the image. The 
intersections of n line segments can be found by the plane 
sweep algorithm in O(n log n + I log n) where I is the number 
of intersections found. When n2<<N, a straightforward O(n2) 
pairwise line segment intersection can be also applied without 
affecting overall time complexity.  Finding the nearest corner 
and inserting the corners in the kd-tree will add O(n root(n)) to 
the complexity. Retrieving all the points from the kd-tree will 
be O(n). Finally the total complexity of our solution will be 
O(N+I log n + n root(n)). Since N >>n, the running time is 
dominated by the line segment extraction algorithm LDC [19], 
and the algorithm presented here does not increase time 
complexity.  

IV. EXPERIMENTAL DATA 
We compared our CLDC corner detection algorithm with 

some existing algorithms, by Moravec [11], Harris/Presley [8], 
Trajkovic [20], SUSAN [17], and FAST [16].  These 
algorithms selected for comparison are well-known and most 
frequently used in literature [15]. The comparison will be made 
using measures of robustness to image transformation such as 
rotating, blur, and adding noise. We ran two experiments.  

In the first experiment we will measure the Reliability, 
Accuracy and Error, on a sample image from [15]. Let D be the 
exact number of corners to be detected, and let F be the number 
of corners actually reported. Reported corners are divided into 
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true positives P and true negatives N so that F=P+N. The 
number of missing corners M represents corners not identified 
by a given algorithm. Reliability is then defined as P/F (thus 
100% accuracy is obtained when N=0), accuracy is F/D (thus 
100% accuracy means that all corners are detected), and error 
is defined as N/D.  

 

  
Figure 2.  Sample S1: Artificial test image containing different corner types 

[15] 

 
Figure 3.  Sample S1b: Increasing P may drastically increase N. 

Figure 3 illustrates the sensitivity of some existing 
algorithms to the selection of parameters. An attempt to 
increase P results in a drastic increase of N in sample S1b. 
SUSAN [17] increases N along horizontal and vertical lines, 
while others increase N along diagonal lines. We observe that 
Harris/Presley [8] and SUSAN [17] were capable of detecting 
more P and less N than Moravec [11] and Trajkovic [20]. 
FAST [16] and CLDC give a more stable output for this 
sample, not detecting many false negatives. 

 
Figure 4.  Sample S2: The same image rotated 30 degrees clockwise 

 

 
Figure 5.  Sample S3: Blurring the same image 
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Figure 6.  Sample 4: Adding Gaussian noise to the image 

The number of parameters in each algorithm is similar.  
Trajkovic [20] has 5 input parameters, Harris/Presley [8] has 4, 
Moravec [11], SUSAN [17], FAST [16] and CLDC have 3 
input parameters each. For examples here with CLDC, E=5 
pixels to extend lines, GKS (Gaussian Kernel size) to blur the 
image was not applied, while LKS (Laplace kernel size) was 
applied with values of 3 or 5. All algorithms are quite fast, and 
there is no significant difference in speed among them. FAST 
[16] claimed to be the fastest one among existing ones. 
SUSAN [17] is slower than Moravec [11] and Trajkovic [20] 
while Harris/Presley [8] is the slowest one [15]. Our CLDC 
algorithm is based on the straight line detection algorithm LDC 
which is faster than the Hough Transform based alternative 
[SSN], and additional time to detect corner is negligible 
compared to the time to detect straight lines. In our 
experiments, the running times were about 0.16sec for 
SUSAN, 0.04sec for FAST, and 0.05sec for CLDC per image.  

Our test set consists of a sample image (S1) which is 
rotated (S2), blurred (S3) and has Gaussian noise added (S4). 
Blurring and noise was performed on sample S1. This example 
shows the overall superiority of our algorithm in reliability, 
accuracy and error measures, compared to the solutions 
currently used in literature: Harris/Presley (HP), Moravec (M), 
Trajkovic (T), SUSAN, and FAST. 

We then calculated the averages and 95% confidence 
intervals over the above samples, for each of the three 
measures and tested algorithms. The results are in Table 2. 

TABLE I.  RELIABILITY, ACCURACY AND ERROR RATES FOR SAMPLE 
IMAGES AND THEIR TRANSFORMATIONS 

 D F M P N Rel % Acc % Err % 
         
S1         
CLDC 77 72 5 72 0 100 94 0 
HP 77 60 18 59 1 98 77 1 
M 77 28 51 26 2 93 34 3 
T 77 28 49 28 0 100 36 0 
SUSAN 77 61 16 61 0 100 79 0 
FAST 77 58 19 58 0 100 75 0 

         
         

         
 D F M P N Rel % Acc % Err % 
         
S1b         
HP 77 158 16 61 97 39 79 126 
T 77 188 16 60 128 32 78 166 
M 77 164 16 60 104 37 78 135 
SUSAN 77 222 16 61 161 27 79 209 
         
S2         
CLDC 81 77 7 74 3 96 91 4 
HP 81 102 3 78 24 76 96 30 
M 81 43 47 33 10 77 41 12 
T 81 36 47 34 2 94 42 2 
SUSAN 81 119 1 80 30 67 99 37 
FAST 81 33 48 33 0 100 41 0 
         
S3         
CLDC 77 76 1 76 0 100 99 0 
HP 77 57 40 37 20 65 48 26 
M 77 27 50 23 4 85 30 5 
T 77 59 46 31 28 53 40 36 
SUSAN 77 56 29 49 7 88 64 9 
FAST 77 32 47 30 2 94 39 2 
         
S4         
CLDC 77 35 43 34 1 97 44 1 
HP 77 67 46 31 36 46 40 47 
M 77 39 53 24 15 62 31 19 
T 77 50 52 25 25 50 32 32 
SUSAN 77 53 48 29 24 55 38 31 
FAST 77 30 47 30 0 100 39 0 
         

TABLE II.  AVERAGES  AND CONFIDENCE  INTERVALS OF TEST SET 

Algorithm Reliability Accuracy Error 

CLDC 0.98 ±0.02 0.82 ±0.25 0.01 ±0.02 
HP 0.71 ±0.21 0.65 ±0.25 0.26 ±0.18 
M 0.79 ±0.13 0.34 ±0.05 0.10 ±0.07 
T 0.74 ±0.26 0.38 ±0.04 0.18 ±0.19 
SUSAN 0.77 ±0.20 0.70 ±0.25 0.19 ±0.17 
FAST 0.98 ±0.03 0.48 ±0.18 0.01 ±0.01 

 

We define repeatability (Rep) as the ratio Per=P12/P1 
where P1 is the number of true positives (correctly identified 
corners) in the original image while P12 is the number of 
corners among them that are also identified as corners in the 
transformed image. The same definition was used in [16, 1]. 
This measure is automatic as it does not depend on human 
perception of what are true corners. Note that measures that 
involve human evaluation of corners were considered in [4]. 
Thus it measures the ratio of correctly identified corners from 
the original image that are also identified in the transformed 
image. The joint accuracy (JA) is defined as 
JA=(P1+P2)/(D1+D2), where P and D for both images are 
defined above, and index 1 or 2 refers to the original and 
transformed image, respectively. Joint accuracy measures the 
total amount of identified corners with respect of total number 
of really existing corners in both images. Finally, we also 
compute the added noise rate (AN) as N2/P12. 
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TABLE III.  REPEATABILITY, JOINT ACCURACY, ADDED NOISE RATES FOR 
TEST SET 

 Algorithm 
Rotation Blur Noise 

Rep JA AN Rep JA AN Rep JA AN 
CLDC 92 86 12 100 100 0 47 44 3 
H 98 75 41 93 71 0 53 40 116 
M 96 32 28 96 30 9 88 30 61 
T 100 36 4 100 36 11 89 32 96 
SUSAN 100 79 49 80 64 14 46 38 39 
FAST 52 39 0 53 40 6 53 40 0 

 

Since none of the above measures is sufficient alone, we 
define a combined index measure that appears useful as a 
single measure, as index=Per*JA-AN. Therefore the index 
increases with the repeatability and joint accuracy but 
decreases with the added noise rate. This index measure also 
confirms the superiority of our scheme compared to others, as 
seen in Table 4. 

TABLE IV.  AN RANKING OF ALGORITHMS 

Algorithm Index 
CLDC 66.45 % 
T 32.79 % 
HP 32.67 % 
SUSAN 30.04 % 
FAST 20.15 % 
M 3.22 % 

 

 

 

 

 

Figure 7.  Corners detected from real imagery 

We also show some examples from real images, with the 
corners detected by each method. In the first example in Figure 
7, all methods except our CLDC have too many corners 
detected on the camera in the image which are in close 
proximity to each other, and apparently missing corners along 
the man’s borders and in the background. The CLDC algorithm 
balances the corners along the camera, man and background, 
which appear evenly spread along the corresponding 
boundaries, thus resembling their shapes. The house image also 
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has regions saturated with corners, yet some important corners 
are missing, by all methods except our CLDC.  

V. CONCLUSION 
We described here a simple, fast, relatively parameterless 

and robust algorithm for detecting corners in an image. The 
time complexity for our CLDC algorithm is dominated by 
O(N) where N is the total number of pixels, and it is then not 
possible, for an image as input, to have an asymptotically faster 
algorithm. We demonstrate its higher accuracy and 
repetitiveness (with respect to image transformations such as 
rotation, blurring, and Gaussian noise) compared to other 
solutions frequently used.  

We defined also a novel index measure (which 
encompasses repeatability, added noise, and joint accuracy) 
that gives a combined measure of ‘goodness’ of an algorithm, 
and again show that our algorithm is better than other existing 
ones. Finally, our algorithm is conceptually very simple to 
understand, probably the simplest among all existing ones. It 
merely defines corners as intersections of two or more line 
segments, and relies on a natural extraction of line segments 
which extracts them as repeated edge pixels along the same 
direction. This is the ultimate advantage of CLDC for its use in 
practice.  

Qualitative and quantitative properties of our CLDC 
algorithm, and its simplicity, provide a basis for its applications 
in stereo matching, object detection/recognition, motion 
tracking, image database retrieval, robot navigation etc. 
Further, it provides output not present in other algorithms, 
where each corner is linked directly with all line segments 
defining it. This enables further applications, for example 
extracting polygonal boundaries of all shapes in the image and 
shape analysis. 
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